Programme francaise de mathématiques les Classes préparatoire TSI première année (pdf)

 Classe préparatoire TSI première année Programme de mathématiques





Objectifs de formation

Le programme de mathématiques de TSI s’inscrit entre deux continuités : en amont avec les programmes rénovés du lycée, en aval avec les enseignements dispensés dans les grandes écoles, et plus généralement les poursuites d’études universitaires. Il est conçu pour amener progressivement tous les étudiants au niveau requis pour poursuivre avec succès un cursus d’ingénieur, de chercheur, d’enseignant, de scientifique, et aussi pour leur permettre de se former tout au long de la vie.

Le programme du premier semestre est conçu de façon à viser trois objectifs majeurs :

– assurer la progressivité du passage aux études supérieures, en tenant compte des nouveaux programmes du cycle

terminal, dont il consolide et élargit les acquis en prenant appui sur divers chapitres des classes de Terminales STI2D

et STL : notations et raisonnement mathématiques, nombres complexes, géométrie dans le plan et dans l’espace,

fonctions usuelles, équations différentielles ;

– consolider la formation des étudiants dans les domaines de la logique, du raisonnement et des techniques de calcul,

qui sont des outils indispensables tant aux mathématiques qu’aux autres disciplines scientifiques ;

– présenter des notions nouvelles riches, de manière à susciter l’intérêt des étudiants.




Table des matières

Objectifs de formation 2

Compétences développées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Description et prise en compte des compétences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Unité de la formation scientifique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Architecture et contenu du programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Organisation du texte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Usage de la liberté pédagogique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

PROGRAMME 6
Vocabulaire ensembliste et méthodes de raisonnement 6
Premier semestre 8
Pratique calculatoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Étude globale d’une fonction d’une variable réelle à valeurs réelles . . . . . . . . . . . . . . . . . . . . . . . . . 11

Géométrie élémentaire du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Géométrie élémentaire de l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Équations différentielles linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Deuxième semestre 21

Nombres réels et suites numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

 Limites, continuité et dérivabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A - Limites et continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B - Dérivabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Intégration sur un segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Développements limités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Polynômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Calcul matriciel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Espaces vectoriels et applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A - Espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B - Espaces vectoriels de dimension finie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

C - Applications linéaires et représentations matricielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Probabilités sur un univers fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Variables aléatoires réelles sur un univers fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36




télécharger le pdf